Minggu, 15 April 2012

Sejarah Bilangan (Teori Bilangan)

Berikut ini akan dijelaskan mengenai sejarah dan perkembangan bilangan (teori bilangan) dari jaman dahulu sampai yang dipergunakan sekarang ini.

a. Sejarah Matematika Purbakala

Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.


Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.


Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya himpunanelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya. 


Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol.


Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini.

b. Perkembangan Teori Bilangan

1) Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.


Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.


Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.


Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal

2) Teori Bilangan Pada Suku Bangsa Mesir Kuno

Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga “Lembaran Ahmes” berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.

3) Teori Bilangan Pada Suku Bangsa India

Sulba Sutras (kira-kira 800–500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Kira-kira abad ke-5 SM merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.
Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit.
Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.


Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma. Awal dari algoritma dikerjakan oleh Euclid. 


Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi. Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.


Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.

4) Teori Bilangan Pada Masa Sejarah (Masehi)

Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963). Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.


Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya.

c. Sejarah Angka Nol

Angka nol diperkenalkan sebagai bilangan dan sebagai symbol untuk mengisi ruang kosong pertama kali oleh al-Khwarizmi. Nol(0) yang dalam bahasa inggris zero yang dapat diartikan pula empty atau kosong.
Sekitar tahun 300 SM orang babilonia telah memulai penggunaan dua buah garis miring( // ) untuk menunjukkan sebuah tempat kosong, sebuah kolom kosong pada Abakus. Simbol ini memudahkan seseorang untuk menentukan letak sebuah symbol. 


Angka nol sangat berguna dan merupakan simbol yang menggambarkan sebuah tempat kosong dalam Abakus, sebuah kolom dengan batu-batu yang ditempatkan di dasar. Kegunaannya hanya untuk memastikan bahwa butiran-butiran tersebut berada di tempat yang tepat, angka nol tidak memiliki nilai numeric tersendiri.
Pada komputer nol ini dapat merusak sistem, karena nol diartikan tidak ada. Berapapun bilangan dikalikan dengan nol hasilnya tidak ada. Nah inilah yang membuat bingung dalam operasi perhitungan. Perhatikan contoh ini :


0 = 0 ( nol sama dengan nol, benar)
0 x 3 = 0 x 89 (nol sama-sama dikalikan dengan sebuah bilangan, karena juga akan bernilai nol)
(0 x 3)/0= (0 x 89)/0 (sebuah bilangan dibagi dengan bilangan yang sama, akan bernilai satu)
3 = 89 (???, hasil ini yang membuat bingung)
Angka nol berbenturan dengan salah satu prinsip utama filsafat barat, sebuah dictum yang akar-akarnya terhujam dalam filsafat angka Phythagoras dan nilai pentingnya tumbuh dari paradoks Zeno. seluruh cosmos Yunani didirikan di atas pilar: tak ada kekosongan. Kosmos Yunani yang dis=ciptakan oleh Phytagoras, Aristoteles dan Ptolemeus masih lama bertahan himpunanelah keruntuhan peradaban Yunani. Dalam kosmos ini tak ada ketiadaaan. Oleh karena itu, hampir sepanjang dua milinium orang-orang barat tak bersedia menerima angka nol. Konsekuensinya sungguh menakutkan. Ketiadaan angka nol menghambat perkembangan matematika, menghalangi inovasi sains dan yang lebih berbahaya, mengacaukan sistem penanggalan.

Sumber :

http://eduklinik.info/2010/11/20/sejarah-teori-bilangan/
http://translate.google.co.id/translate?hl=id&langpair=en|id&u=http://en.wikipedia.org/wiki/Number 


Sumber : http://sejarahmatematiakabyandini.blogspot.com/2011/06/sejarah-bilangan-teori-bilangan.html
Lihat Selengkapnya »»  

Sejarah Lingkaran

Lingkaran sudah ada sejak jaman prasejarah. Penemuan roda adalah penemuan mendasar dari sifat lingkaran. Orang-orang Yunani menganggap Mesir sebagai penemu geometri. Juru tulis Ahmes, penulis dari papirus Rhind, memberikan aturan untuk menentukan area dari sebuah lingkaran yang sesuai dengan π = 256 / 81 atau sekitar 3,16.

Teorema pertama yang berhubungan dengan lingkaran yang dikaitkan dengan Thales sekitar 650 SM. Buku III dari Euclid 's Elements berurusan dengan sifat lingkaran dan masalah inscribing dan escribing poligon.


Salah satu masalah matematika Yunani adalah masalah menemukan persegi dengan wilayah yang sama sebagai sebuah lingkaran yang diberikan. Beberapa 'kurva terkenal dalam tumpukan pertama kali dipelajari dalam upaya untuk memecahkan masalah ini. Anaxagoras di 450 SM adalah matematikawan recored pertama untuk studi masalah ini.


Masalah untuk menemukan luas lingkaran menyebabkan integrasi. Untuk lingkaran dengan rumus yang diberikan di atas wilayah ini π^2 dan panjang kurva adalah suatu 2π.

Pedal lingkaran adalah cardioid jika titik pedal diambil pada lingkar dan merupakan limacon jika titik pedal bukan pada keliling.

kaustik dari sebuah lingkaran dengan titik bersinar di keliling adalah cardioid, sedangkan bila sinar sejajar maka kaustik adalah nephroid .


Apollonius, pada sekitar 240 SM, efektif menunjukkan bahwa persamaan r bipolar = kr 'merupakan sistem lingkaran koaksial sebagai k bervariasi. Dalam hal persamaan bipolar mr^2 + nr^2 = c^2 merupakan sebuah lingkaran yang pusatnya membagi ruas garis antara dua titik tetap dari sistem dalam rasio n ke m.


Sumber :

http://www-history.mcs.st-and.ac.uk/Curves/Circle.html 


Sumber : http://sejarahmatematiakabyandini.blogspot.com/2011/06/sejarah-lingkaran.html
Lihat Selengkapnya »»  

Sejarah Angka Nol

Dalam matematika modern sekarang ini, kita sudah terbiasa dengan nol sebagai nomor. Sulit untuk percaya bahwa sistem bilangan yang paling kuno tidak termasuk nol. Peradaban Maya mungkin telah termasuk orang pertama yang memiliki simbol untuk nol. Orang-orang suku Maya berkembang di semenanjung Yucatan, Meksiko sekitar 1300 tahun yang lalu. Mereka menggunakan sebagai pengganti angka, dalam sebuah sistem tempat-nilai vertikal. Hal ini dianggap sebagai salah satu prestasi terbesar budaya mereka.

Asal mula nama dari angka nol ini sendiri berdasarkan bahasa Arab, ‘sifr’ (data dari buku “calendar” karya D.E.Duncan). Bangsa Yunani kuno memulai kontribusi mereka untuk matematika pada saat angka nol sebagai indikator  tempat kosong pada penomoran masuk dan digunakan di Babilonia. Ptolomeus ditahun 130 Masehi menggunakan sistem sexagesimal babilonia berdasarkan tempat kosong dari nol ini.

Hingga pada abad ke-7, Brahmagupta seorang matematikawan India memperkenalkan beberapa sifat bilangan nol. Sifat-sifatnya adalah suatu bilangan bila dijumlahkan dengan nol adalah tetap, demikian pula sebuah bilangan bila dikalikan dengan nol akan menjadi nol. Tetapi, Brahmagupta menemui kesulitan, dan cenderung ke arah yang salah, ketika berhadapan dengan pembagian oleh bilangan nol “sebuah bilangan dibagi oleh nol adalah tetap”. Tentu saja ini suatu kesalahan fatal. Tetapi, hal ini tetap harus sangat dihargai untuk ukuran saat itu.

Ide-ide brilian dari matematikawan India selanjutnya dipelajari oleh matematikawan Muslim dari Arab. Hal ini terjadi pada tahap-tahap awal ketika matematikawan Al-Khawarizmi meneliti sistem perhitungan Hindu (India) yang menggambarkan sistem nilai tempat dari bilangan yang melibatkan bilangan 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. 

Al-Khawarizmi yang pertama kali memperkenalkan penggunaan bilangan nol sebagai nilai tempat dalam basis sepuluh. Sistem ini disebut sebagai sistem bilangan desimal. Selain itu Al Khawarizmi merupakan penulis kitab aljabar (matematika) pertama di muka bumi. Karyanya, Kitab Aljabr Wal Muqabalah merupakan pertama kalinya dalam sejarah dimana istilah aljabar muncul dalam kontesk disiplin ilmu.

Sumber :
http://www.newton.dep.anl.gov/askasci/gen99/gen99535.htm
http://teguuuh.wordpress.com/sejarah-ipa/sejarah-angka-nol/
http://www.untukku.com/artikel-untukku/sejarah-angka-nol-untukku.html

Sumber : http://abdublog92.wordpress.com/2011/09/30/sejarah-angka-nol/
Lihat Selengkapnya »»  

Keindahan Matematika


Matematika ternyata menyimpan keindahan. Bagaimana mengungkap keindahan matematika? Untuk itu pada bulan ini, kami menyajikan tema editorial ”Keindahan Matematika”. Materi ini kami sajikan dengan tujuan agar pembaca dapat lebih memahami makna matematika sebagai sebuah ilmu yang dikenal sebagai pelayan ilmu pengetahuan (servant of sciences), ratu ilmu pengetahuan (queen of sciences), bahasa ilmu pengetahuan (language of sciences), yang hidup untuk menghidupkan ilmu-ilmu lain, dan merupakan salah satu dari ilmu-ilmu dasar (basic sciences).


Banyak definisi mengenai matematika, tergantung kepada latar belakang dan pemahaman pembuat definisi sendiri. Disamping itu, banyak matematikawan yang mendefinisikan bahwa matematika adalah ilmu yang mempelajari mengenai teorema-teorema dan sistem aksiomatis. Definisi ini sedikit problematik karena belum mencakup topik-topik matematika yang bersifat eksploratif dan eksperimen baik yang dikerjakan secara manual oleh matematikawan sebelum abad ke-20, maupun yang dilakukan dengan komputer oleh matematikawan mulai abad ke-20.


Menurut Prof. Ir. RMJT Soehakso, profesor Matematika pertama di Indonesia, Matematika mempunyai pola yang sangat menarik, begitu menariknya, beliau sering mengatakan bahwa Matematika bagaikan gadis tercantik di seluruh dunia. Rupanya setelah lama kita mempelajari Matematika, yang dimaksud cantik adalah polanya termasuk pola abstraknya, sedang yang dimaksud di seluruh dunia adalah kebaharuan Matematika bersifat universal di seluruh dunia, misalnya penemuan rumus abc dalam penyelesaian persamaan kuadrat dan penemuan rumus kosinus oleh Al Khawarizmi  berlaku untuk seluruh dunia. Begitu pula semua penemuan penelitian misalnya disertasi doktor Matematika, unsur kebaharuannya berlaku secara universal di manapun.


Metematika merupakan disiplin ilmu otonom, dapat berdiri sendiri, satu dari ilmu-ilmu pengetahuan yang mempunyai kekuatan kreatif akal manusia yang paling jelas. Matematika memainkan peran fundamental dalam ilmu pengetahuan modern, mempunyai pengaruh kuat baginya dan dipengaruhi pula olehnya dalam berbagai cara. Dalam matematika ada dua konsep yang seringkali menjadi perbedaan dalam matematika, yaitu matematika murni (pure mathematics) dan matematika terapan (applied mathematics). Hendaknya kita memandang keduanya sebagai satu keping mata uang, sama, hanya berbeda cara pandang dari kedua sisinya, dan tidak perlu dipertentangkan, bahkan saling menguatkan.


Dari sudut pandang ilmu murni, matematika dipandang sebagai seni dan kreatifitas yang dimainkan oleh fikiran manusia. Matematika merupakan kreatifitas yang mengekspresikan keindahan bentuk aksioma, teorema, relasi logika, relasi numerik, yang semuanya menarik bagi penelitinya karena kesempurnaan logikanya, sehingga menjadikannya sebuah ilmu yang mendorong peningkatan kapasitas manusia. Karena kesempurnaan logika inilah, maka dalam matematika tidak ada kontradiksi tentang nilai kebenaran di dalamnya. Tokoh matematika seperti Pythagoras, Plato sampai Gauss melihat bahwa matematika dipandang sebagai sistem yang teratur dan lebih sempurna daripada dunia nyata dalam kehidupan sehari-hari.


Dari sisi aplikasi, matematika dapat mengungkap fenomena-fenomena alam, masalah kehidupan sehari-hari, dan masalah dalam ilmu pengetahuan dan teknologi. Dalam empat abad terakhir kepentingan praktis matematika dalam ilmu pengetahuan dan teknologi (IPTEK) tak terbantahkan lagi, karena sebagian besar ilmuwan sangat menyadari makna matematika sebagai ilmu alat, sebagai pelayan, dan sebagai bahasa bagi ilmu-ilmu lainnya. Oleh karenanya diperbagai universitas di dunia, matematika dipandang mempunyai peran yang sangat penting pada hampir semua bidang IPTEK, seperti ilmu fisika, kimia, biologi, farmasi, ekonomi, ilmu komputer, ilmu-ilmu rekayasa, ilmu-ilmu sosial, dan lain-lain.


Seorang Matematikawan Amerika Serikat (Hardy, 1940) mengatakan bahwa matematikawan bagaikan pelukis atau pembuat puisi, semuanya pembuat pola. Berikut contoh puisi matematika yang dibuat oleh Mutiara Hikmah, siswa SD Kelas IV SDN 08 Talang Jawa Tanjung Enim, pada kongres IndoMS 2008, yang membentuk pola menarik dan cantik.


RUMAH SEGI EMPAT :
Di suatu simpang empat
Di pemukiman yang rapat
Terdapat sebuah rumah segi empat
Pintu dan jendelanya berwarna coklat
 
Di halaman trapesium hijau nanluas
Tumbuh lingkaran tanaman hias
Ada juga tanaman pisang, rambutan dan nanas
Diameter kebahagiaan terukir disebuah senyuman puas

Dalam rumah sederhana segi empat
Terdapat kamar bujur sangkar sebanyak empat
Keliling kamar kutambahkan setiap sisinya yang berjumlah empat
Luas kamarku adalah hasil dari sisi kuadrat

Genting tanah liat menghiasi atap rumahku
Tampak bangunan segitiga dari depan rumahku
Keliling segitiga tambahkan setiap sisi atap rumahku
Luas segitiga alas kali tinggi dibagi dua sisi atap rumahku
 
Terdapat sebuah lukisan pemandangan yang terpanjang
Di ruang tamuku yang berbentuk persegi panjang
Bila ditambahkan setiap sisi ku dapatkan keliling persegi panjang
Luas persegi panjang hasil perkalian lebar dan panjang
 
Wahai kawan akulah penghuni rumah segi empat
Aku ingin belajar dengan cermat dan giat
Agar memperoleh ilmu yang bermanfaat
Dan menjadi orang berguna di masyarakat.
 
Akhirnya kami menyampaikan terima kepada pembaca editorial ini mohon maaf apabila terdapat kekurangan. Sekian dan terima kasih.
Kepala PPPPTK Matematika
Prof. Dr.rer.nat. Widodo, M.S.

Lihat Selengkapnya »»  

Desain 5 Kota Masa Depan Skala Teknologi Canggih Spektakuler di Dunia

Free wi-fi di mana-mana, jalan-jalan yang didedikasikan untuk transportasi umum bebas-mengalir, mobil dilarang, dan tidak ada emisi limbah atau karbon – tapi sementara ini mungkin terdengar seperti terlalu mengada-kota masa depan, mereka sudah di sini.

Masdar kota, hanya beberapa mil dari Timur Tengah lokomotif ekonomi Abu Dhabi, akan beroperasi penuh pada tahun 2020 dan berencana untuk mendaur ulang sebagian besar airnya. Hal ini juga akan melarang mobil ‘gas-menenggak’, yang akan digantikan dengan sistem transportasi bawah tanah dioperasikan dengan baterai.
Bergerak ekologi serupa sedang terjadi di China, di mana Dezhou di bagian utara negara itu telah menciptakan ‘lembah surya’ dengan lampu jalan dan kolam renang dipanaskan oleh matahari dan 80 persen bangunan dengan pemanas air matahari.


Tokyo




The shard, london: london bridge tower - also known as the shard - is due to be completed in 2012. it will be the tallest building in europe, standing over 1,000 ft tall, and will include offices, flats, restaurants, and a hotel


Gleaming: Masdar City in Abu Dhabi
Concept capsule: the seascraper is designed to be anchored in strong currents to provide free energy
The gyre: this aquatic tower would float underwater skimming across the ocean and would be both a resort and a research station
Al khor stadium, qatar: for the 2022 world cup, the open-air stadia will have solar-powered air-conditioning, which aim to keep temperatures under 80 degrees

The Shard, London: London Bridge Tower Gleaming: masdar city in abu dhabi will be fully open in 2020. cars are banned and most of its water will be recycled

Al Khor stadium, Qatar
Sochi olylmpic stadium, russia: the sustainable stadium for the 2014 winter games is designed to evoke a shell, with walls and roof layered in a crystalline 'skin' that reflects sunlight and can be lit up at night

Sochi Olylmpic Stadium, Russia
Paris, france: the city has started using cool architects to make public housing attractive within the city itself, rather than using the suburbs
Paris, France


sumber :http://www.morzing.com/konten/701/desain-6-kota-masa-depan-skala-teknologi-canggih-spektakuler-di-dunia.html

Sumber : http://riangold.wordpress.com/2011/03/05/desain-5-kota-masa-depan-skala-teknologi-canggih-spektakuler-di-dunia/
Lihat Selengkapnya »»  

Video Teknologi Canggih Mobil Masa Depan

Lihat Selengkapnya »»